StartClim2015.C

Eine Vorstudie für ein Monitoring-Programm für den Einfluss des Klimawandels auf die österreichische Vogelfauna - Ein Klima-Einfluss-Index für die Brutvögel Österreichs

BirdLife Österreich Klimaforschung, Zentralanstalt für Meteorologie und Geodynamik

ProjektmitarbeiterInnen und AutorInnen des Berichts BirdLife Österreich: Erwin Nemeth und Norbert Teufelbauer Klimaforschung, Zentralanstalt für Meteorologie und Geodynamik: Ingeborg Auer und Brigitta Hollòsi, Diese Publikation sollte folgendermaßen zitiert werden: Nemeth, E., Auer, I., Hollòsi, B., Teufelbauer, N., (2016): Ein Klima-Einfluss-Index für die Brutvögel Österreichs. Endbericht von StartClim2015.C in StartClim2015: Weitere Beiträge zur Umsetzung der österreichischen Anpassungsstrategie, Auftraggeber: BMLFUW, BMWF, ÖBf, Land Oberösterreich Wien, im November 2016 StartClim2015.C Teilprojekt von StartClim2015 Projektleitung von StartClim2015: Universität für Bodenkultur, Department für Wasser – Atmosphäre – Umwelt Institut für Meteorologie, Peter Jordan-Straße 82, 1190 Wien URL: www.startclim.at StartClim2015 wurde aus Mitteln des BMLFUW, des BMWF, der ÖBf und des Landes Oberösterreich gefördert.

Inhaltsverzeichnis

C-1	Einleitung	4
C-2	Methoden	6
C-2.1	Monitoring der Brutvögel Österreichs	6
	C-2.1.1 Zählungen	6
	C-2.1.2 Trendberechnung	7
C-2.2	" Climate Suitability Trends" nach Gregory et al. (2009)	8
C-2.3	Beziehung zwischen CST, Bestandstrends und anderen Faktoren	9
C-2.4	"Klimagewinner" und Klimaverlierer" und die Berechnung des "Climate Impact Indicators" (CII)	9
C-2.5	Klimadaten für den Beobachtungszeitraum	9
C-3	Resultate	11
C-3.1	Zusammenhang zwischen Populationstrends, Climate Suitabilty Trends uanderen Faktoren	
C-3.2	Trends für CST+ und CST- Arten und CII	12
C-3.3	Entwicklung der Temperatur im Zeitraum 1998 bis 2014	13
C-4	Diskussion	15
Literati	ur	17
Abbild	lungs- und Tabellenverzeichnis	19
Anhan	ng 1. Bestandstrends aller verwendeten Arten, geordnet nach ihrem "Climate suitability index" (CST). Trends sind entweder signifikant moderat steig (↑), fallend (↓), stark steigend(↑↑), stark fallend (↓↓) und stabil oder unsi (-)	end cher
	g 2.Verwendete Arten, logarithmiertes Gewicht, Zugstrategie, Habitat, Trend (1998 bis 2015) und Climate suitability index" (CST)	

C-1 Einleitung

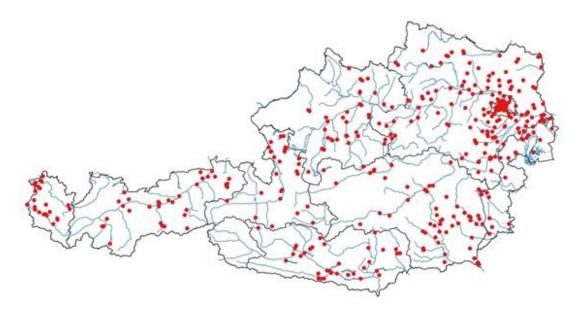
Habitatverluste und Klimawandel bedrohen weltweit viele Tier- und Pflanzenarten. Durch den Klimawandel verändert sich die Verbreitung von Tieren und Pflanzen und in Zukunft erwartet man dadurch drastische negative Auswirkungen auf die Biodiversität (Thomas et al. 2004). Verschiedene Taxa sind verschieden betroffen, mobilere Arten haben das Potential sich schneller anzupassen, aber auch sie werden durch den Klimawandel bedroht (Lemoine et al. 2007). So zeigen sich bei den hochmobilen Zugvögeln in unseren Breiten unterschiedliche negative Auswirkungen. In den Brutgebieten kann es z.B. beim Trauerschnäpper (Ficedula hypoleuca) durch eine zeitliche Desynchronisierung von Nahrungsquellen und Brutablauf zu reduziertem Reproduktionserfolg und zu einem Populationsrückgang kommen (Both et al. 2006). In den Überwinterungsgebieten kommt es durch extreme Wetterereignisse, wie bei Dürren in der Sahelzone, zu einer höheren Mortalität, die dann zu Bestandrückgängen der bei uns brütenden Transahara-Zieher führen (Vickery et al. 2014). Andererseits sind bei nicht so weit ziehenden Zugvögeln auch positive Effekte zu erwarten. Wärmere Winter bedeuten oft geringere Mortalität; sie können zu kürzeren Zugwegen führen (Visser et al. 2009) und eine Verschiebung der Überwinterungsgebiete nach Norden bewirken (Huntley et al. 2007, Maclean et al. 2008). Auch die Brutgebiete wandern polwärts und in Österreich wurde in den letzten Jahrzehnten die Ankunft neuer Brutvogelarten verzeichnet, wie z. B. die des Seidenreihers (Schuster et al.1998) oder die der Zwergscharbe (Nemeth 2007). Die Ausbreitung beider Arten ist wahrscheinlich zumindest zum Teil klimabedingt.

Die klimabedingte Veränderung der Brutareale führt zu einer Zu- bzw. Abnahme von Populationen und dieser Umstand wurde von Gregory et al. (2009) dazu verwendet, einen europaweiten "Climate Impact Indicator" (CII) zu entwerfen, der diese Veränderungen in einem einfachen Index messbar machen soll. Dazu wurde zuerst anhand von Daten zur Verbreitung von Vogelarten in den 1980er Jahren errechnet, inwieweit Klimavariablen die Verbreitung und das Vorkommen der einzelnen Arten bestimmen. Damit war es möglich vorherzusagen, welche Arten bei einem Temperaturanstieg zunehmen bzw. abnehmen sollten. Der so errechnete "Climate Suitability Trend" (CST) kann dazu verwendet werden, "Klimagewinner" und "Klimaverlierer" zu definieren und das Verhältnis von Gewinnern zu Verlieren ergibt schließlich den CII. Gregory et al. (2009) konnten zeigen, dass im Zeitraum 1980 – 2005 die Populationsentwicklungen der einzelnen Arten, die im Klimaindex zusammengefasst wurden, tatsächlich der Entwicklung der Temperaturentwicklung folgten. Ein Nachteil dieses zusammengesetzten Indexes war jedoch, dass er für jede Art eine europaweite Trendentwicklung annahm ohne Variationen innerhalb des Kontinents zu berücksichtigen. So können z. B. Arten in Südeuropa abnehmen, während sie in Mittel- und Nordeuropa zunehmen. Um derartige regionale Unterschiede berücksichtigen zu können erweiterten Stephens et al. (2016) den Ansatz von Gregory et al. (2009), indem sie für Europa den CST auf Länderbasis errechneten, was eine differenziertere Bewertung der Populationstrends ermöglicht. Weiters verglichen Stephens et al. (2016) die Entwicklung von Vogelpopulationen in Europa und Nordamerika. Sie fanden auf beiden (Sub-)Kontinenten für den Zeitraum 1980 – 2010 eine starke Anhängigkeit der Populationsentwicklungen vom Klima, wobei in Nordamerika die Arten aus der Gruppe der "Klimagewinner" stark zunahmen, während in Europa vor allem die "Klimaverlierer"-Arten stark abnahmen. Stephens et al. (2016) zeigten für beide Kontinente, dass Populationstrends von den vorher errechneten CSTs abhängig waren, und sie zeigten auch, dass andere Variablen wie Habitat, Körpergröße (als "Proxy" für die "life-history" einer Art) und Zugstrategie sich auf die Entwicklung der Bestände einzelner Arten auswirken konnten.

In unserer Arbeit versuchten wir analog zu Gregory et al. (2009) und Stephens et al. (2016) für Österreich einen Klima-Einfluss-Index zu erstellen. Dazu verwendeten wir die gleiche Berechnungsmethode wie Stephens et al. (2016), wobei unser Datensatz zeit-

lich auf den Zeitraum 1998 - 2015 limitiert war. Neben Klima können Habitat, Zugstrategie und die "Life-history" der eingebundene Arten einen wesentlichen Einfluss auf die Populationstrends zeigen (Stephens et al. 2016). Vor allem Bestände der Vögel der Agrarlandschaft gingen in den letzten Jahrzehnten aufgrund der Intensivierung der Landwirtschaft dramatisch zurück (siehe z. B. Burns et al. 2016) und in Mitteleuropa dürfte der Einfluss der intensiven Landnutzung den Effekt der Klimaerwärmung zum Teil überdecken (Howard et al. 2015). Auch für Österreichs Vögel der Agrarlandschaft wurden zum Teil dramatische Bestandsrückgänge nachgewiesen, die sich in der negativen Entwicklung des Österreichischen Farmland Bird Index wiederspiegeln (Teufelbauer 2010). Um diese meist negative Entwicklung bei den Vögeln der Agrarlandschaft zu berücksichtigen, testeten wir, ob sich Arten der Kulturlandschaft in ihren Trends von den anderen Arten unterschieden. Unter der Annahme dass Klimaänderungen sich stärker bei Arten zeigen, die nicht von der Intensivierung der Landwirtschaft betroffen sind, verglichen wir schließlich die Indices aller untersuchten Vogelarten mit den Indices jener Vogelarten, die nicht in Kulturlandschaften vorkommen.

C-2 Methoden


C-2.1 Monitoring der Brutvögel Österreichs

C-2.1.1 Zählungen

Die verwendeten Vogeldaten stammen aus dem Brutvogel-Monitoring von BirdLife Österreich, einem Langzeitprogramm zur Dokumentation von Bestandsveränderungen häufiger österreichischer Brutvogelarten (Abb. C 1). Die Vogelzählungen erfolgen nach der Methode der Punkt-Stopp-Zählung oder auch Punkttaxierung (Bibby et al. 2000). Untersuchungseinheit sind Zählstrecken, die von mehreren, räumlich nah beieinander liegenden Zählpunkten gebildet werden. Im Mittel besteht eine Zählstrecke des Brutvogel-Monitorings aus 12,1 ± 3,3 Zählpunkten (Mittelwert ± Standardabweichung). Zwischen Zählpunkten im Offenland liegt in der Regel eine Distanz von mindestens 400 m Luftlinie. Die Auswahl der Zählpunkte erfolgte anfänglich durch die BearbeiterInnen; in den letzten Jahren werden neue Zählgebiete nach regionalem Bedarf und in Rücksprache mit dem Koordinator festgelegt.

Die Zählpunkte werden zweimal im Frühjahr in einem vorgegebenen Zeitfenster von jeweils gut zwei Wochen begangen (15,6 ± 1,5 Tage; Mittelwert ± Standardabweichung) das so gelegt ist, dass es drei Wochenenden umfasst. Im hier dargestellten Zeitraum 1998-2015 umfassten die Zeitfenster im Mittel das Intervall 15.4.-29.4. für die erste und 20.5.-4.6. für die zweite Begehung. Zu früh oder zu spät durchgeführte Begehungen wurden dann akzeptiert, wenn die Abweichung vom Zeitfenster weniger als 10 Tage betrug (11,4 % der Begehungen im Zeitraum 1998-2015). Die Zähldauer beträgt bei jeder Begehung fünf Minuten pro Zählpunkt, wobei die ZählerInnen nach Ankunft am Zählpunkt 2-3 Minuten warten sollen, um die durch ihre Ankunft hervorgerufene Störung wieder abklingen zu lassen. Bei der Zählung werden alle gesehenen oder gehörten und sicher bestimmten Vogelarten notiert. Es besteht kein Entfernungslimit für registrierte Vögel; jedoch werden von den BearbeiterInnen erkannte Doppelzählungen nicht aufgenommen. Zusatzinformationen wie z. B. Geschlecht, Alter, Auftreten in Trupps oder Verhaltensweisen (z. B. Junge fütternd) können optional vermerkt werden. Neben Daten zu anwesenden Vogelarten werden einfache Informationen zum Lebensraum und dessen Veränderungen um den Zählpunkt erhoben.

Bei schlechtem Wetter (z. B. starker Regen, Wind) finden keine Zählungen statt. Um die Vergleichbarkeit über die Jahre aufrecht zu erhalten, wird (1) jede Zählstrecke immer von derselben bzw. denselben Personen bearbeitet, (2) werden die Zählpunkte einer Zählstrecke immer in der gleichen Reihenfolge bearbeitet und (3) werden die Zählpunkte über die Jahre bei jeder Begehung etwa zur gleichen Uhrzeit aufgesucht. Grundsätzlich sind die BeobachterInnen angehalten, ihre Zählungen am frühen Morgen oder Vormittag – bei vielen Arten der Zeitpunkt der höchsten Aktivität (Bibby et al. 2000) – durchzuführen. In wenigen Fällen weichen die Bearbeiter von diesem Schema ab; bei schwierigem Gelände und/oder einer großen Zahl von Zählpunkten ist eine längere Zähldauer unvermeidbar (Frühauf & Teufelbauer 2008). Ausführliche Informationen zur Zählmethode des Brutvogel-Monitoring geben Dvorak & Teufelbauer (2008).

Abb. C-1: Lage der Beobachtungstrecken für das Monitoring der Brutvögel in Österreich in den Beobachtungsjahren 1998-2015.

Trendberechnung

Die hier dargestellten Bestandstrends umfassen den Zeitraum 1998-2015 (Anhang 1). Als Grundeinheit der Trendberechnung wurden die Zählstrecken verwendet, da die einzelnen Zählpunkte einer Strecke statistisch nicht als unabhängig voneinander betrachtet werden können. Zunächst wurde an jedem Zählpunkt und für jede Art das Maximum der festgestellten Individuen aus den beiden Begehungen eines Zähljahres ermittelt. Alle Punktmaxima einer Zählstrecke und eines Jahres wurden anschließend summiert und bildeten die Basis für die Trendberechnungen. Lediglich bei Star Sturnus vulgaris und Braunkehlchen Saxicola rubetra wurden nur die Daten einer Begehung für die Trendberechnung verwendet. Beim Star wurden nur die Daten der ersten Begehung verwendet, da bei der zweiten Begehung schon viele nachbrutzeitliche Trupps registriert werden, die die Interpretation der Bestandsentwicklung aufgrund der sehr großen Konfidenzintervalle erschweren. Beim Braunkehlchen wurden nur die Daten der zweiten Begehung verwendet, da im Zeitraum der ersten Begehung viele Brutvögel des nördlichen Europa bei uns durchziehen und eine Unterscheidung zwischen Durchzüglern und Brutvögeln in den Daten oft nicht gemacht wurde. Es wurden grundsätzlich keine Korrekturen von Zähldaten, z. B. Übernahme eines beobachteten Paares mit dem Wert eins, oder Ausschluss von größeren Vogeltrupps, durchgeführt. Zählstrecken-Jahr-Kombinationen, bei denen die oben angeführten Zählmethoden nicht eingehalten worden waren, wurden von der weiteren Auswertung ausgeschlossen. In die Trendberechnung einer Art flossen alle Zählstrecken mit zumindest einmaligem Auftreten der betreffenden Art ein. Je nach Art stand schließlich eine Stichprobe von 17-119 Zählstrecken/Jahr für die Auswertung zur Verfügung. Im Jahr 2008 konnte die Zahl der bearbeiteten Zählstrecken deutlich gesteigert werden (Abb. 1), was jedoch keinen Einfluss auf die hier dargestellten Trendverläufe hat.

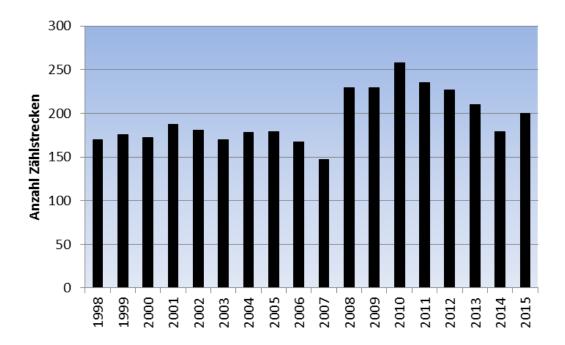


Abb. C- 2: Anzahl der in jedem Jahr bearbeiteten Zählstrecken des Brutvogel-Monitoring

Die Berechnung der Bestandsentwicklung folgte den Empfehlungen von van Strien & Soldaat (2008) für das Pan-European Common Bird Monitoring Scheme PECBMS und wurden mit dem Programm TRIM (Version 3.54; Pannekoek & van Strien, 2005) durchgeführt. Zum leichteren Datenhandling wurde das MS Access-Tool BirdSTATs verwendet (van der Meij, 2007). Das Programm TRIM verwendet zur Analyse Poisson-Regressionen und ist auf die Auswertung von Monitoring-Daten zugeschnitten – es berücksichtigt fehlende Zähljahre in Zeitreihen und kann weiters sowohl die Ungleichverteilung von Zählgebieten ("overdispersion") als auch die Abhängigkeit eines Zählergebnisses von den Vorjahren ("serial correlation") berücksichtigen (ter Braak et al.1998, Vořišek et al. 2008).

C-2.2 " Climate Suitability Trends" nach Stephens et al. (2007)

Als Maß für die zu erwartenden Bestandstrends aufgrund der Klimaerwärmung verwendeten wir die die von Stephens et al. (2016) berechneten "Climate Suitability Trends" (CSTs), die für die einzelne Länder Europas, darunter auch für Österreich, berechnet wurden. Die Berechnung nach Stephens et al. (2016) soll hier kurz skizziert werden. CSTs basieren auf den Verbreitungsdaten der einzelnen Brutvogelarten, erhoben in einem Atlasprojekt in den 80er Jahren des vorigen Jahrhunderts (Hagemeijer & Blair, 1997), und auf umfangreichen Klimadaten aus dem Zeitraum 1961 bis 1990 (siehe elektronischer Supplement von Stephens et al. 2016), die in einer Auflösung von 50 x 50 km verwendet wurden. Für jede Art wurden mit bereits erprobten Methoden (Gregory et al. 2009; Huntley et al. 2007) "species distribution models" errechnet, die aufgrund der Klimadaten die Präsenz oder Absenz von Arten vorhersagten. Diese Zusammenhänge zwischen Verbreitung und Klima wurden schließlich dazu verwendet, für den Zeitraum 1980 bis 2010 die jährliche Wahrscheinlichkeit des Auftretens einer Art in einem Land vorherzusagen (Stephens et al.1016). Der CST einer Art ergab sich aus der Steigung einer linearen Regression, die angibt, inwieweit die Aufenthaltswahrscheinlichkeit der Art über den Zeitraum 1980 bis 2010 zu- oder abgenommen hat. Es ist wichtig darauf hinzuweisen, dass diese CST-Werte aus der Verbreitung und dem Zusammenhang zu bioklimatischen Variablen berechnet worden sind und daher unabhängig von den hier verwendeten Bestandstrends sind, die aus dem Monitoring der Brutvögel Österreichs berechnet werden.

C-2.3 Beziehung zwischen CST, Bestandstrends und anderen Faktoren

Die Beziehung zwischen CSTs und den Bestandstrends wurde für 76 Arten mittels linearer Regression berechnet. Die Bestandstrends für alle Arten sind im Anhang 1 dargestellt. Da anzunehmen ist, dass Bestandstrends der Arten auch von anderen Faktoren abhängig sind, wurden wie in Stephens *et al.* (2016) auch das artspezifische Habitat (Kulturland, Wald, Feuchtgebiete und eine Kategorie für alle anderen Habitate, Einteilung nach Stephens et al. 2016, siehe Anhang 2), der Logarithmus der Körpermasse (als "life-history" Merkmal, das verwendet werden kann um r- von k-Strategen zu unterscheiden, Gregory et al. 2009, Reif et al. 2010a) und die Zugstrategie (Standvögel, Kurzstrecken- und Landstreckenzieher) verwendet (Anhang 2). Da die Vögel der Kulturlandschaft in den letzten Jahren besonders starke Bestandsrückgänge zeigten, die andere Zusammengänge verdecken könnten, wurden die Abhängigkeiten von diesen Variablen auch ohne der Gruppe der Vögel der Kulturvögel getestet (insgesamt 55 Arten).

C-2.4 "Klimagewinner" und Klimaverlierer" und die Berechnung des "Climate Impact Indicators" (CII)

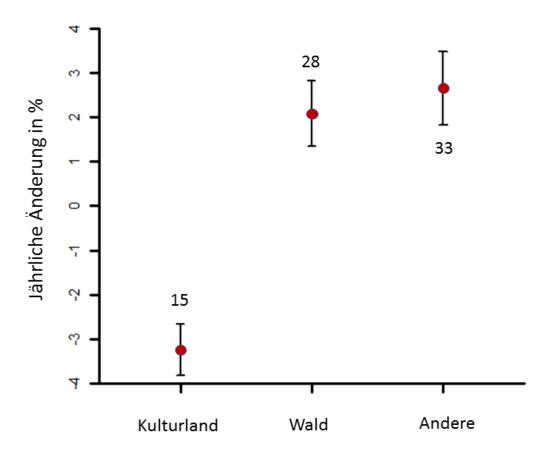
Alle verwendeten Arten wurden gemäß des Vorzeichens ihres CST in "Klimagewinner" mit positivem Trend und in "Klimaverlierer" mit negativem Trend eingeteilt. Bei der Zusammenfassung beider Gruppen wurden die Arten nach der Größe der Trends gewichtet, das heißt Arten mit einem höheren positiven CST haben einen größeren Einfluss auf den zusammengesetzten Trend bei den Klimagewinnern und Arten mit einen niedrigeren negativen Trend hatten einen größeren Einfluss auf die Gruppe der Klimaverlierer. Diese Gewichtung erfolgte nach Gregory et al. (2009) und Stephens et al. (2016). Dazu wurde die Häufigkeit für eine Art i für k Jahre mit der Formel in die Indexwerte Xij = In (Ni,j+1 / Ni,j) für k-1 Jahre umgewandelt, wobei Ni,j der Populationsindex einer Art i im Jahr j ist und Ni,j+1 der Populationsindex des drauffolgenden Jahres. Die Gewichtung einer Art wurde mit der Formel

$$W_{i,j} = \sum_{s=1}^{V} \frac{|CST_i|}{|CST_s|}$$

berechnet, wobei v die Zahl der Arten ist. Dann wurde die Summe von Wi,jXi,j über die jeweilige Gruppe von Arten im Jahr j berechnet. Dies repräsentiert den gewichteten Logarithmus der proportionalen Änderung des Indexes vom Jahr j zu Jahr j+1. Danach wurde der Anfangswert im Jahr 1998 auf 100 gesetzt und die darauf folgenden Werte aus dieser proportionalen Änderung errechnet. Daraus ergeben sich die zusammengesetzten Werte für die CST+ und CST- Gruppe für alle Jahre von 1998 bis 2015.

Die beiden zusammengefassten Gruppen wurden dazu verwendet, um für jedes Jahr den Climate Impact Indicator zu berechnen, der als das Verhältnis der Klimagewinner zu Klimaverlierer definiert ist (CST+/CST-). Der Anfangswert im ersten Jahr wurde auf 1 gesetzt. Die Berechnungen wurden sowohl für alle 76 Arten durchgeführt, als auch für die 55 Arten die nach Ausschluss aller Vögel der Kulturlandschaft verbleiben.

C-2.5 Klimadaten für den Beobachtungszeitraum


Für alle Zählstrecken wurde die Temperaturentwicklung von 1998 bis 2014 erfasst. Dazu wurde der Spartacus – Datensatz der Zentralanstalt für Meteorologie und Geodynamik verwendet, der vollständig bis 2014 vorlag (Hiebl & Frei 2015). Für jede Kartierungsstrecke wurde, basierend auf den Tagestemperaturen in °C, die mittlere Jahrestemperatur, die mittlere Monatstemperatur im Jänner und für jedes Jahr die Summe der Tage über 5°C berechnet. Die Auswahl dieser Variablen erfolgte, um unsere Ergebnisse besser mit der Studie von Stephens et al. (2016) vergleichen zu können. Für alle drei

uriablen, einzeln und zusammen wurden lineare Regressionen über die Jahre	gerech-
t, um mögliche zeitlichen Trends in der Temperaturentwicklung festzustellen.	

C-3 Resultate

C-3.1 Zusammenhang zwischen Populationstrends, Climate Suitabilty Trends und anderen Faktoren

Von allen linearen Modellen mit der Steigung der Trends aller verwendeten Arten (n = 76) als vorhergesagte Variable und allen möglichen Kombinationen von Habitat, Zugstrategie, Körpermasse (logarithmiert) und CSTs als unabhängige Variable, konnte nur das Modell mit der Habitat als Prädiktor ein signifikanten Ergebnis erzielen (ANOVA, n = 76, F=3.51, p=0.03). Die Untersuchung der einzelnen Habitatvariablen zeigt, dass dies vor allem auf die Gruppe der Vögel der Kulturlandschaft zurückgeht (Abb. C-3).

Abb. C- 3: Mittelwert ± Standardfehler für Habitatfaktoren in einer ANOVA, um die durchschnittliche jährliche Änderung in den Bestandstrends einzelner Arten vorherzusagen

Rechnet man nochmal ein lineares Modell unter Ausschluss der Gruppe der Vogelarten der Kulturlandschaft, so liefern Modelle mit CST und dem Logarithmus der Körpermasse signifikante Ergebnisse (Tab. 1).

Tab. C- 1: Ergebnisse linearer Modelle mit CST, logarithmierter Körpermasse, Habitattyp und Zugstrategie als unabhängige Variable und durchschnittliche jährliche Trends als abhängige Variable. Dargestellt sind die drei signifikanten Modelle. Nur die Variablen logarithmierte Körpermasse und Climate Suitability Trend (CST) zeigten jeweils einzeln oder zusammen einen signifikanten Einfluss auf die Bestandstrends. Alle Interaktionen waren nicht signifikant. R² ist die erklärte Varianz der einzelnen Modelle.

Variable im Modell	Koeffizient(en) ±	F-Wert	P-Wert	R^2
	Standardfehler			
Log Körpermasse	0,05 ± 0,19	7,07	0,01	0,1
СЅТ	59,5 ± 28,3	4,38	0,04	0,06
Log Körpermasse +	0,45 ± 0,19			
сѕт	49,22 ± 27,5	5,29	0,008	0,17

C-3.2 Trends für CST+ und CST- Arten und CII

Die Indexwerte sowohl für alle CST- als auch CST+ Arten (Abb. 4a) zeigen im Beobachtungszeitraum einen Rückgang von ca. 33 bzw. 19 Prozent (lineares Model Index CST- Arten abhängig von Zeit, r2=76, n=18, F=54,83, p<0,001, lineares Modell, Index CST+ Arten abhängig von Zeit, r2=0,77, n=18, F=58,17 p<0,001). Der CII steigt im Beobachtungszeitraum um 0,21. Der Verlauf ist nicht stetig und erscheint zweigeteilt mit einem Höchstwert im Jahr 2008 (Abb. C-4b).

Betrachtet man die Trends ohne den Vogelarten der Kulturlandschaft, so zeigt sich bei den CST+ Arten in der Trendgrafik kaum eine Veränderung von 1998 zu 2015 (minus 1,5 %, Abb. C-4c), obwohl das lineare Model über die Zeit durch höhere Werte in den ersten Hälfte des Beobachtungszeitraumes Jahren eine signifikante Abnahme anzeigt (lineare Regression, Index, Gewinner abhängig von Zeit, r2 =0,21, n = 18, F = 5,48 p = 0,03). Die Indexwerte der CST- Arten zeigen einen deutlichen Rückgang um 22 Prozent (lineare Regression, Index Verlierer abhängig von Zeit, r2 = 0,69, n = 18, F=35,85, p < 0,001). Der CII steigt signifikant von 1998 bis 2015 (lineare Regression, CII ohne Kulturlandvögel abhängig von Zeit. r2 = 0,48, n = 18, F=16.13, p < 0,001). Wie beim CII für alle Arten, zeigt er einen Anstieg bis 2008 und danach einen leichteren Abfall.

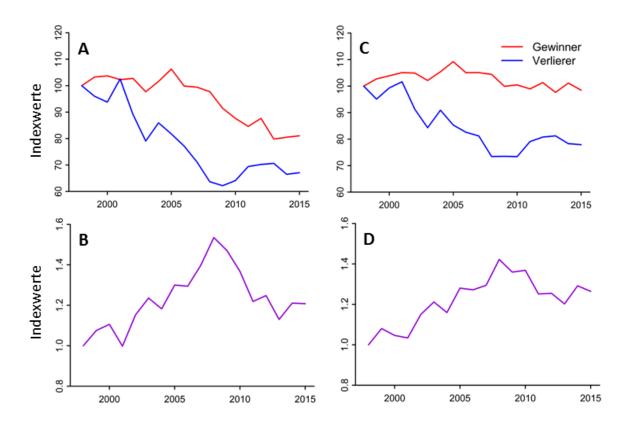


Abb. C- 4: Indexwerte für "Klimagewinner"- und "Klimaverlierer"- Arten (oben) und Climate Impact Indices (unten). Diagramme A und B für alle 76 Arten und Diagramme C und D für 55 Arten ohne die Vogelarten des Kulturlandes

C-3.3 Entwicklung der Temperatur im Zeitraum 1998 bis 2014

Für den Zeitraum 1998 bis 2014 konnte weder für die einzelnen der drei Temperaturvariablen (Jahresmittel der Temperatur in °C, mittlerer Temperatur im Jänner und Summe der Tage über 5° Celsius) noch für alle Variablen kombiniert in einem Modell ein signifikanter Trend festgestellt werden (lineare Regression über die Zeit, n = 16 Jahre, in allen Fällen n.s., Abb. C-5).

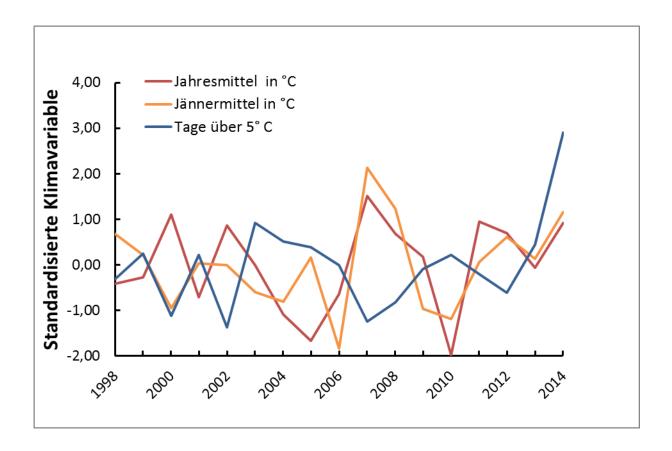


Abb. C- 5: Entwicklung der z-transformierten Klimavariablen von 1998-2014. Die Klimavariablen sind Jahresmittel in °C, mittlere Temperatur im Jänner und Summe der Tage über 5° Celsius. Die Daten wurden aus den täglichen Temperaturdaten im Spartacus- Datensatz für alle 1 x 1 km Raster ermittelt, in denen Vögel gezählt wurden (Hiebl & Frei 2015)

C-4 Diskussion

Der errechnete Klima-Einfluss-Index steigt im Beobachtungszeitraum 1998 bis 2015 (Abb. C-4), wobei aber sowohl CST+ als auch CST- Arten abnehmen. Untersucht man die Bestandsindices der einzelnen Vogelarten in Abhängigkeit von anderen Faktoren, so zeigt sich kein Einfluss des CST, aber ein signifikanter Effekt des Habitats, wobei hier die Vögel der Kulturlandschaft eine stark negative Entwicklung aufweisen (Abb. C-2). Dies führt dazu, dass sowohl die Artengruppe der zu wahrscheinlichen "Klimagewinnner" als auch die der "Klimaverlierer" zurückgehen (Abb. C-3a).

Ein genereller Bestandsrückgang bei den häufigen Kulturlandvogelarten wurde in Österreich bereits durch den Farmland Bird Index nachgewiesen (Teufelbauer 2010). Wie in Großbritannien (Burns et al. 2016) oder Tschechien dürfte die Intensivierung der Landwirtschaft diesen Rückgang verursachen (Reif et al. 2010b). Die fehlende Abhängigkeit unseres Bestandstrends von den CST-Werten scheint gesamteuropäischen Bestandstrends zu widersprechen, die eine deutliche Abhängigkeit von der Temperaturentwicklung der letzten drei Jahrzehnte demonstrieren (Jiguet et al. 2010). Allerdings haben Howard et al. (2015) nachgewiesen, dass der Einfluss von Landnutzung und Klima in unterschiedlichen Teilen Europas unterschiedlich sein kann; so hat die Landnutzung in Mitteleuropa einen stärkeren Einfluss auf Vogelpopulationen als das Klima, während in Nordeuropa der Effekt des Klimas größer ist.

Wenn man die durch die intensivere Landnutzung betroffenen Vogelarten bei der Berechnung der Indexwerte ausschließt, steigt in unserem Datensatz der Klima-Einfluss-Index stärker und signifikant an. Ebenso weist ein signifikanter, positiver, wenn auch schwacher Zusammenhang der Bestandstrends der Nicht-Kulturlandarten mit den CSTs auf einen Klimaeinfluss hin (Tab.1).

In beiden berechneten CIIs findet man einen Anstieg bis 2008 und danach einen mehr oder weniger großen Rückgang (Abb. C-3b und 3d). Dieses Muster ist nicht aus der Temperaturentwicklung erklärbar, weil hier keine Trends festgestellt werden konnten (Abb.C- 4). So ergibt auch ein Versuch den Verlauf der beiden CIIs direkt mit Temperaturwerten in Beziehung zu setzen kein signifikantes Ergebnis, da in allen Fällen Korrelationen zwischen allen Indexwerten mit den Jahresmittel in °C, den Jännermittel der Temperatur und der Summe der Tage über 5° C nicht signifikant sind und die Korrelationskoeffizienten im niedrigen Bereich zwischen -0,17 und 0,16 liegen (n ist jeweils 18, Pearson Korrelationskoeffizent in allen drei Fällen n.s.). Dieses Fehlen eines direkten Zusammenhangs ist aber nicht verwunderlich, wenn man bedenkt, dass Arealausbreitungen und Bestandsentwicklungen nicht unmittelbar sofort auf Temperaturentwicklungen folgen müssen und hier große artspezifische Unterschiede zu erwarten sind. Da vor unserem Beobachtungszeitraum in den 1980iger und 1990iger – in Österreich genauso wie weltweit - eine dramatischen Temperaturzunahme erfolgte (Auer et al. 2014), könnte der Anstieg des CII bis 2008 eine zeitversetzte Nachwirkung dieser Erwärmung sein. Wie Abbildung C-4c zeigt, wären davon vor allem die Gruppe der CST- Arten oder "Klimaverlierer" betroffen gewesen, die bei den im Vergleich zu vorher hohen Temperaturen in Ihren Beständen zurückgingen.

Der mittlere jährliche Trend aller Arten ist negativer bei Arten mit kleinerem Körpergewicht (Tab. C-1). Leichtere Vögel sind meist r-Strategen mit kürzerer Lebensdauer und größerem Gelege. Reif und seine Mitarbeiter (2010a) fanden denselben Zusammenhang in Tschechien und vermuten, dass diese Gruppe schneller und stärker unter raschen Umweltveränderungen leidet.

Der CII für Österreich zeigt nach Ausschluss der Kulturlandarten einen höheren und signifikanten Anstieg, der vor allem auf einen Rückgang der CST- oder "Klimaverlierer"-Arten zurückzuführen ist. Der Swiss Bird Index Climate Change, der 40 Arten beinhaltet,

zeigt einen deutlichen Anstieg bei den dort ausgewählten Klimagewinnern und einen fast stabilen Verlauf bei den Klimaverlierern (Zbinden et al. 2012). Diese Trend-Unterschiede erklären sich vermutlich aus der unterschiedlichen Auswahl der Arten. In unserem Datensatz sind durch die nicht zufällige Lage der Zählstrecken (Abb. C-1) höhere Lagen unterrepräsentiert. Das führt dazu, dass besonders durchs Klima betroffene Alpenvögel (Chamberlain et al. 2013) nicht hinreichend vertreten sind. Ein CII mit mehr montanen Arten könnte daher sensibler auf Klimaänderungen reagieren. Allerdings könnten auch hier anthropogene Habitatveränderungen einen entscheidenden Einfluss auf die Populationsveränderungen haben (Maggini et al. 2011, Archaux & Bakkaus 2007).

Der Verlauf der zusammengesetzten Populationstrends für Klimagewinner und Klimaverlierer in Österreich gleicht nach Ausschluss der Kulturlandvögel dem Ergebnis von Stephens et al. (2016) für ganz Europa, das einen gleichbleibenden Trend für Klimagewinner und eine starke Abnahme bei Klimaverlierern zeigt. Diese Übereinstimmung mit dieser - aufgrund des größeren Datenmaterials wesentlich besser abgesicherten Studie - spricht dafür, dass der Klima-Einfluss-Index für die Brutvögel Österreichs genauso wie der europaweite Index als Maßzahl für den Klimaeinfluss auf die ausgewählten Arten herangezogen werden kann. Es ist zu erwarten, dass die wahrscheinliche Klimaerwärmung in den kommenden Jahren (Ahrens et al. 2014) zu einem weiteren Anstieg des Klima-Einfluss-Index führen wird und die Fortführung des Monitorings der Brutvögel Österreichs wird hier wertvolles Datenmaterial zur Abschätzung der Klimafolgen auf unsere Vogelwelt bereitstellen. Wie unsere Analyse zeigte, wird es dabei immer notwendig sein auch andere Faktoren zur Erklärung der Trends zu berücksichtigen. Wir empfehlen daher auch in Zukunft das Monitoring der Brutvögel Österreichs heranzuziehen, um klimabedingte Veränderungen in den Häufigkeiten und der Verbreitung der Brutvogelfauna Österreichs festzustellen. Zusätzlich könnte man das Auftreten und die Ausbreitung neuer Arten in Österreich (z.B. Seidenreiher und Weißbartseeschwalbe) in den letzten Jahrzehnten analysieren, um nach einer artspezifischen Beurteilung möglicherweise klimabedingte Änderungen zu dokumentieren.

Literatur

- Ahrens, B., H. Formayer, A. Gobiet, G. Heinrich, M. Hofstätter, C. Matulla, A. F. Prein und H. Truhetz. 2014. Zukünftige Klimaentwicklung. In: Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). Austrian Panel on Climate Change (APCC). Verlag der Österreichischen Akademie der Wissenschaften, Wien. Österreich.
- Archaux, F. und N. Bakkaus. 2007. Relative impact of stand structure, tree composition and climate on mountain bird communities. Forest Ecology and Management **247**:72-79.
- Auer, I., U. R. Foelsche, U. R. Böhm, B. Chimani, L. Haimberger, H. Kerschner, K. A. Koinig, N. K. und C. Spötl. 2014. Vergangene Klimaänderung in Österreich. In: Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). Verlag der Österreichischen Akademie der Wissenschaften, Wien, Österreich.
- Bibby, C. J., Burgess, N. D., Hill, D. A., und S. H. Mustoe. (2000). *Bird census techniques* (2nd ed.). Amsterdam, The Netherlands: Elsevier Academic Press.
- Burns, F., Eaton, M. A., Barlow, K. E., Beckmann, B. C., Brereton, T., Brooks, D. R. und R.D. Gregory (2016). Agricultural Management and Climatic Change Are the Major Drivers of Biodiversity Change in the UK. *Plos One,* 11(3). doi: 0.1371/journal.pone.0151595
- Chamberlain, D. E., M. Negro, E. Caprio und A. Rolando (2013). Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biological Conservation **167**:127-135.
- Dvorak, M., und N. Teufelbauer (2008). Monitoring der Brutvögel Österreichs. Arbeitsunterlagen. 2.Auflage. Wien: BirdLife Österreich.
- Frühauf, J., und N. Teufelbauer (2008). Bereitstellung des Farmland Bird Index für Österreich. Vorstudie Wien: Im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. BirdLife Österreich. 144 pp.
- Gregory, R. D., Willis, S. G., Jiguet, F., Vorisek, P., Klvanova, A., van Strien, A., und R. E. Green (2009). An Indicator of the Impact of Climatic Change on European Bird Populations. *Plos One,* **4**(3). doi: 10.1371/journal.pone.0004678
- Hagemeijer, W. J. M., und J. M. Blair (1997). *The EBBC Atlas of European Breeding Birds.Their distributiobn and Abundance*. London: T. & A.T. Poyser.
- Hiebl, J. und C. Frei (2015). Daily temperature grids for Austria since 1961 concept, creation and applicability. *Theor. Appl. Climatology*. doi: 10.1007/s00704-015-1411-4
- Howard, C., Stephens, P. A., Pearce-Higgins, J. W., Gregory, R. D., und S. G. Willis (2015). The drivers of avian abundance: patterns in the relative importance of climate and land use. *Global Ecology and Biogeography*, **24**(11), 1249-1260. doi: 10.1111/geb.12377
- Huntley, B., Green, R. E., Vollingham, Y. C. und S.G. Willis (2007). *Climatic Atlas of European Breeding Birds* Barcelona: RSBP & Lynx editions.
- Jiguet, F., Gregory, R. D., Devictor, V., Green, R. E., Vorisek, P., Van Strien, A. und D. Couvet (2010). Population trends of European common birds are predicted by characteristics of their climatic niche. *Global Change Biology*, *16*(2), 497-505. doi: 10.1111/j.1365-2486.2009.01963.x

- Maggini, R., A. Lehmann, M. Kéry, H. Schmid, M. Beniston, L. Jenni, and N. Zbinden. 2011. Are Swiss birds tracking climate change?: Detecting elevational shifts using response curve shapes. Ecological Modelling **222**:21-32
- Nemeth, E. (2007). Die Zwergscharbe, *Phalacrocorax pygmeus* (Pallas) 1773 ein neuer Brutvogel für Österreich *Egretta*, **49**, 2-5.
- Pannekoek, J., & Van Strien, A. J. (2005). TRIM 3 Manual (Trends and Indices for Monitoring Data). Voorburg, The Netherlands: Statistics Netherlands.
- Reif, J., K. Št'Astný, and V. Bejček. 2010a. Contrasting effects of climatic and habitat changes on birds with northern range limits in Central Europe as revealed by an analysis of breeding bird distribution in the Czech Republic. Acta Ornithologica **45**:83-90.
- Reif, J., Z. Vermouzek, P. Vorisek, K. Stastny, V. Bejcek, and J. Flousek. 2010b. Population changes in Czech passerines are predicted by their life-history and ecological traits. Ibis **152**:610-621.
- Schuster, A., Nemeth, E., Grüll, A., und M. Rössler. (1998). Der Seidenreiher (Egretta garzetta) ein neuer Brutvogel für Österreich. *Egretta*, **41**, 61-66.
- Stephens, P. A., Mason, L. R., Green, R. E., Gregory, R. D., Sauer, J. R., Alison, J., . . . Willis, S. G. (2016). Consistent response of bird populations to climate change on two continents. *Science*, *352*(6281), 84-87. doi: 10.1126/science.aac4858
- ter Braak, C. J. F., van Strien, A., Meijer, R., und T. J. Verstrael (1994). Analysis of monitoring data with many missing values: which method. In H. E.J.M. & T. J. Verstrael (Eds.), *Bird Numbers 1992. Distribution, monitoring and ecological aspects. Proceedings of the 12th International Conference of IBCC and EOAC* (pp. 663-673). Noordwijkerhout, The Netherlands Statistics Netherlands, Voorburg/Heerlen & SOVON.
- Teufelbauer, N. (2010). The Farmland Bird Index for Austria first results of the changes in populations of common birds of farmed land. *Egretta*, *51*, 35-50.
- van der Meij, T. (2007). BirdSTATs. Species Trends Analysis Tool (STAT) for European bird data. Manual Oegstgeest/Niederlande..
- Van Strien, A., & Pannekoek, J. (1998). Missing counts in bird monitoring programs. Missen is gissen. Ontbrekende tellingen in vogelmeetnetten, **72**(2), 49-54.
- van Strien, A., & Soldaat, L. (2008). *Calculating indices and trends using TRIM.* Czech Republic.
- Vořišek, P., Gregory, R., D., Burfield, I. und & A., Brunner (2008). The Farmland Bird Index (FBI) and the Pan-European Common Bird Monitoring Scheme (PECBMS): Answers to some frequently asked questions. In P. Vořišek, A. Klvaňová, W. S. & R. D. Gregory (Eds.), (pp. 116-121). Czech republic: CSO/RSPB.

Abbildungs- und Tabellenverzeichnis

Abbildunger	1
Abb. C- 1:	Lage der Beobachtungstrecken für das Monitoring der Brutvögel in Österreich
Abb. C- 2:	Anzahl der in jedem Jahr bearbeiteten Zählstrecken des Brutvogel- Monitoring
Abb. C- 3:	Mittelwert ± Standardfehler für Habitatfaktoren in einer ANOVA, um die durchschnittliche jährliche Änderung in den Bestandstrends einzelner Arten vorherzusagen
Abb. C- 4:	Indexwerte für "Klimagewinner"- und "Klimaverlierer"- Arten (oben) und Climate Impact Indices (unten). Diagramme A und B für alle 76 Arten und Diagramme C und D für 55 Arten ohne die Vogelarten des Kulturlandes13
Abb. C- 5:	Entwicklung der z-transformierten Klimavariablen von 1998-2014. Die Klimavariablen sind Jahresmittel in °C, mittlere Temperatur im Jänner und Summe der Tage über 5° Celsius. Die Daten wurden aus den täglichen Temperaturdaten im Spartacus- Datensatz für alle 1 x 1 km Raster ermittelt, in denen Vögel gezählt wurden (Hiebl & Frei 2015)
Tabellen	
Tab. C- 1:	Ergebnisse linearer Modelle mit CST, logarithmierter Körpermasse, Habitattyp und Zugstrategie als unabhängige Variable und durchschnittliche jährliche Trends als abhängige Variable. Dargestellt sind nur signifikante Modelle. Alle Interaktionen waren nicht signifikant

Anhang 1. Bestandstrends aller verwendeten Arten, geordnet nach ihrem "Climate suitability index" (CST). Trends sind entweder signifikant moderat steigend (\uparrow), fallend (\downarrow), stark steigend($\uparrow\uparrow$), stark fallend ($\downarrow\downarrow$) und stabil oder unsicher (-).

Art	CST	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Trend
Sumpfrohrsänger (Acrocephalus palustris)	0.006	100	122	85	83	76	83	95	65	74	84	69	51	78	60	63	48	52	65	Ţ
Schwanzmeise (Aegithalos caudatus)	0.011	100	173	148	166	208	136	153	176	149	138	116	155	149	135	118	56	123	157	-
Feldlerche (Alauda arvensis)	0.014	100	102	104	91	93	97	90	88	80	71	81	68	64	62	59	64	60	61	\downarrow
Stockente (Anas platyrhynchos)	0.003	100	147	141	134	156	149	160	114	139	135	95	109	125	111	104	104	98	93	↓
Mauersegler (Apus apus)	0.002	100	184	322	194	183	137	205	247	199	104	135	148	151	99	106	112	46	69	↓
Graureiher (Ardea cinerea)	0.009	100	107	102	114	120	70	69	78	55	89	58	58	70	63	64	81	94	53	↓
Mäusebussard (Buteo buteo)	0.009	100	93	93	114	107	115	85	102	93	99	104	95	82	118	108	128	93	107	-
Bluthänfling (Carduelis cannabina)	0.004	100	57	108	83	98	88	70	73	83	56	67	61	46	52	58	46	54	48	↓
Stieglitz (Carduelis carduelis)	0.013	100	100	84	88	130	84	116	98	74	123	119	89	89	115	118	115	136	137	1
Grünling (Carduelis chloris)	0.014	100	97	105	91	107	109	99	109	106	107	111	101	98	99	105	76	60	51	↓
Gartenbaumläufer (Certhia brachydactyla)	0.025	100	116	95	134	115	103	78	131	95	138	135	67	73	66	95	56	72	44	↓
Kernbeißer (Coccothraustes coccothraustes)	0.011	100	81	96	88	99	114	105	117	123	52	80	88	56	67	84	106	89	99	-
Hohltaube (Columba oenas)	0.003	100	106	104	104	93	134	92	124	141	107	113	106	93	183	190	101	146	201	1
Ringeltaube (Columba palumbus)	0.009	100	101	117	134	126	122	119	127	121	128	129	137	119	130	143	138	141	153	1
Aaskrähe (Corvus corone)	0.012	100	115	126	117	115	124	125	147	136	133	128	136	128	130	125	130	113	119	1
Dohle (Corvus monedula)	0.01	100	122	139	110	137	148	211	175	182	154	170	246	193	227	205	201	187	198	1
Kuckuck (Cuculus canorus)	0.011	100	104	91	81	86	75	95	94	85	91	80	78	70	75	78	69	81	74	↓
Mehlschwalbe (Delichon urbica)	0.004	100	93	82	92	104	71	96	83	96	53	67	59	63	53	56	68	49	48	Ţ
Buntspecht (Dendrocopos major)	0.006	100	108	99	102	104	117	123	135	107	122	125	100	111	115	129	112	116	112	1
Goldammer (Emberiza citrinella)	0.009	100	106	101	88	91	84	101	93	91	87	85	81	84	81	84	78	74	79	↓
Rotkehlchen (Erithacus rubecula)	0.005	100	104	95	101	113	104	102	98	103	107	100	81	87	92	87	70	75	85	1
Turmfalke (Falco tinnunculus)	0.011	100	134	149	186	168	130	145	164	143	108	167	147	116	125	136	175	125	149	_
Halsbandschnäpper (Ficedula albicollis)	0.013	100	127	161	165	204	230	219	220	299	238	267	295	320	176	188	317	321	305	1

Art	CST	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Trend
Buchfink (Fringilla coelebs)	0.009	100	104	104	106	110	99	110	107	103	106	103	98	102	98	105	97	97	95	1
Eichelhäher (Garrulus glandarius)	0.005	100	104	127	115	117	130	83	207	96	90	107	85	79	134	91	116	83	104	\
Rauchschwalbe (Hirundo rustica)	0.002	100	131	127	113	120	103	161	133	128	110	91	113	113	95	118	121	94	98	\downarrow
Neuntöter (Lanius collurio)	0.005	100	112	110	85	83	83	115	91	77	68	87	78	77	84	74	66	69	80	1
Nachtigall (Luscinia megarhynchos)	0.027	100	103	120	97	76	60	108	116	120	98	102	134	124	108	106	112	120	107	1
Grauammer (Miliaria calandra)	0.017	100	69	61	32	49	57	28	45	38	51	30	28	18	16	19	11	10	11	$\downarrow\downarrow$
Bachstelze (Motacilla alba)	0.003	100	117	117	119	119	120	113	116	121	112	97	109	107	108	110	91	90	98	1
Pirol (Oriolus oriolus)	0.012	100	100	84	106	95	98	118	125	108	110	125	114	110	100	114	96	102	102	_
Tannenmeise (Parus ater)	0.001	100	96	105	97	90	100	97	104	89	67	81	78	71	87	79	70	62	72	Ţ
Blaumeise (Parus caeruleus)	0.01	100	103	101	99	109	104	125	118	108	107	96	93	100	96	114	122	118	117	_
Kohlmeise (Parus major)	0.009	100	99	99	94	98	99	115	103	102	92	92	89	94	96	104	95	100	99	_
Sumpfmeise (Parus palustris)	0.013	100	91	99	100	113	108	103	105	116	104	100	80	95	107	94	108	132	110	-
Haussperling (Passer domesticus)	0.006	100	97	106	95	109	101	127	118	105	90	97	118	116	113	118	119	122	130	1
Feldsperling (Passer montanus)	0.013	100	120	124	114	123	105	117	144	156	132	134	110	134	126	140	164	155	146	1
Rebhuhn (Perdix perdix)	0.014	100	93	125	92	95	96	58	86	100	69	63	81	38	28	44	29	25	30	↓ ↓
Hausrotschwanz (Phoenicurus ochruros)	0.012	100	87	90	100	93	92	101	94	105	106	101	93	101	100	93	85	86	93	-
Zilpzalp (Phylloscopus collybita)	0.009	100	68	67	69	59	64	72	57	54	62	62	58	68	68	49	48	59	56	1
Elster (Pica pica)	0.002	100	104	131	123	120	108	98	106	89	88	95	89	89	98	78	82	86	99	Ţ
Grauspecht (Picus canus)	0.003	100	68	49	44	66	87	77	65	59	49	43	32	42	24	35	35	53	45	Ţ
Grünspecht (Picus viridis)	0.012	100	88	84	100	96	107	120	156	111	130	118	105	103	112	95	124	120	120	1
Sommergoldhähnchen (Regulus ignicapillus)	0.014	100	83	73	73	55	60	45	38	40	55	47	26	32	31	35	32	47	42	1
Schwarzkehlchen (Saxicola torquata)	0.016	100	85	64	79	77	73	98	79	61	70	83	83	68	61	52	26	23	24	~
Girlitz (Serinus serinus)	0.017	100	98	94	105	85	76	84	86	64	73	55	46	50	44	34	27	22	28	↓ ↓
Kleiber (Sitta europaea)	0.012	100	105	133	114	110	118	128	114	123	108	109	90	99	98	120	134	106	113	_
Türkentaube (Streptopelia decaocto)	0.021	100	151	153	154	179	167	175	192	187	219	195	199	206	184	205	190	187	188	1
Turteltaube (Streptopelia turtur)	0.013	100	108	99	109	103	89	76	82	65	73	75	74	72	63	58	68	41	44	1
Star (Sturnus vulgaris)	0.02	100	125	112	115	86	96	134	122	161	125	132	136	100	93	122	92	123	138	_

Art	CST	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Trend
Mönchsgrasmücke (Sylvia atricapilla)	0.006	100	107	110	104	106	98	111	106	104	112	109	119	122	128	123	114	128	111	1
Dorngrasmücke (Sylvia communis)	0.01	100	116	154	127	139	101	139	119	125	111	97	107	97	98	79	99	76	101	↓
Zaunkönig (Troglodytes troglodytes)	0.009	100	91	95	111	89	83	85	81	69	98	96	82	82	76	63	55	76	95	\downarrow
Amsel (Turdus merula)	0.011	100	100	101	98	103	98	100	94	85	91	94	95	97	96	102	96	102	107	_
Singdrossel (Turdus philomelos)	0.007	100	101	103	121	108	115	104	102	108	103	108	100	102	107	117	82	103	97	↓
Misteldrossel (Turdus viscivorus)	0.003	100	79	89	119	103	111	108	82	94	79	81	87	99	105	111	100	95	110	-
Kiebitz (Vanellus vanellus)	0.002	100	106	132	101	88	129	91	114	92	125	95	94	92	96	77	80	64	80	↓
Baumpieper (Anthus trivialis)	-0.01	100	109	88	66	57	78	61	59	70	52	47	50	48	50	50	57	55	48	↓
Waldbaumläufer (Certhia familiaris)	-0.008	100	96	72	92	101	78	99	83	103	87	87	64	64	65	62	70	61	63	↓
Kolkrabe (Corvus corax)	-0.015	100	138	128	230	182	287	201	133	94	163	126	125	151	232	159	191	128	218	-
Schwarzspecht (Dryocopus martius)	-0.001	100	79	112	111	113	131	134	129	122	120	133	100	122	133	123	131	99	120	_
Gelbspötter (Hippolais icterina)	-0.012	100	116	109	98	98	101	105	81	110	111	110	94	98	98	104	166	107	94	_
Wendehals (Jynx torquilla)	-0.001	100	103	96	56	91	84	105	123	87	107	86	72	91	72	81	109	69	91	-
Grauschnäpper (Muscicapa striata)	-0.001	100	130	139	155	162	126	133	147	113	147	119	113	123	140	151	107	120	129	-
Haubenmeise (Parus cristatus)	-0.009	100	89	92	100	98	83	98	94	96	63	75	76	55	75	91	78	89	78	↓
Weidenmeise (Parus montanus)	-0.022	100	82	83	83	52	52	86	85	88	64	53	62	49	70	58	68	72	70	-
Gartenrotschwanz (Phoenicurus phoenicurus)	-0.017	100	97	165	123	99	73	120	81	83	105	87	132	110	135	135	116	154	117	-
Waldlaubsänger (Phylloscopus sibilatrix)	-0.002	100	75	64	66	56	65	76	78	69	64	45	29	34	35	38	71	53	62	↓
Fitis (Phylloscopus trochilus)	-0.026	100	82	74	71	73	50	59	66	53	47	45	50	50	43	59	51	41	38	\downarrow
Heckenbraunelle (Prunella modularis)	-0.012	100	85	98	118	105	95	91	73	81	71	55	54	54	53	60	57	57	53	\downarrow
Gimpel (Pyrrhula pyrrhula)	-0.008	100	89	117	128	104	107	68	165	102	74	72	78	80	72	73	110	90	106	-
Wintergoldhähnchen (Regulus regulus)	-0.012	100	87	97	93	83	67	49	43	50	65	50	27	43	44	49	30	42	43	↓
Braunkehlchen (Saxicola rubetra)	-0.011	100	117	79	106	100	64	91	103	84	89	86	72	61	67	64	79	58	79	\
Gartengrasmücke (Sylvia borin)	-0.005	100	104	117	85	86	86	91	85	67	83	67	63	81	73	76	57	84	79	↓
Klappergrasmücke (Sylvia curruca)	-0.001	100	93	122	74	95	48	101	116	118	96	77	76	74	56	73	60	70	72	\
Wacholdersddrossel (Turdus pilaris)	-0.024	100	97	73	130	111	87	88	93	79	51	51	44	63	63	59	50	50	50	$\downarrow \downarrow$

Anhang 2. Verwendete Arten, logarithmiertes Gewicht, Zugstrategie, Habitat, Trend (1998 bis 2015) und "Climate suitability index" (CST).

Art	LogGewicht	Zugstrategie	Habitat	Trend	CST
Sumpfrohrsänger (Acrocephalus palustris)	2.477	LANGSTRECKEN	KULTURLAND	-3.66	0.006
Schwanzmeise (Aegithalos caudatus)	2.104	STANDVOGEL	WALD	-1.87	0.011
Feldlerche (Alauda arvensis)	3.616	KURZSTRECKEN	KULTURLAND	-3.61	0.014
Stockente (Anas platyrhynchos)	6.968	KURZSTRECKEN	FEUCHTGEBIET	-2.14	0.003
Baumpieper (Anthus trivialis)	3.223	LANGSTRECKEN	KULTURLAND	-3.86	-0.01
Mauersegler (Apus apus)	3.627	LANGSTRECKEN	ANDERES	-5.66	0.002
Graureiher (Ardea cinerea)	7.344	KURZSTRECKEN	FEUCHTGEBIET	-2.97	0.009
Mäusebussard (Buteo buteo)	6.788	KURZSTRECKEN	ANDERES	0.39	0.009
Bluthänfling (Carduelis cannabina)	2.728	KURZSTRECKEN	KULTURLAND	-4.06	0.004
Stieglitz (Carduelis carduelis)	2.747	KURZSTRECKEN	KULTURLAND	1.69	0.013
Grünling (Carduelis chloris)	3.325	KURZSTRECKEN	ANDERES	-2.32	0.014
Gartenbaumläufer (Certhia brachydactyla)	2.14	STANDVOGEL	WALD	-3.99	0.025
Waldbaumläufer (Certhia familiaris)	2.197	STANDVOGEL	WALD	-2.73	-0.008
Kernbeißer (Coccothraustes coccothraustes)	3.989	STANDVOGEL	WALD	-0.96	0.011
Hohltaube (Columba oenas)	5.635	KURZSTRECKEN	WALD	2.78	0.003
Ringeltaube (Columba palumbus)	6.194	KURZSTRECKEN	ANDERES	1.67	0.009
Kolkrabe (Corvus corax)	7.054	STANDVOGEL	ANDERES	0.93	-0.015
Aaskrähe (Corvus corone)	6.346	STANDVOGEL	ANDERES	0.53	0.012
Dohle (Corvus monedula)	5.505	STANDVOGEL	ANDERES	3.86	0.01
Kuckuck (Cuculus canorus)	4.727	LANGSTRECKEN	WALD	-1.67	0.011
Mehlschwalbe (Delichon urbica)	2.674	LANGSTRECKEN	ANDERES	-4.1	0.004
Buntspecht (Dendrocopos major)	4.402	STANDVOGEL	WALD	0.69	0.006
Schwarzspecht (Dryocopus martius)	5.771	STANDVOGEL	WALD	0.94	-0.001

Art	LogGewicht	Zugstrategie	Habitat	Trend	CST
Goldammer (Emberiza citrinella)	3.277	STANDVOGEL	KULTURLAND	-1.61	0.009
Rotkehlchen (Erithacus rubecula)	2.901	KURZSTRECKEN	WALD	-1.79	0.005
Turmfalke (Falco tinnunculus)	5.38	KURZSTRECKEN	KULTURLAND	0.09	0.011
Halsbandschnäpper (Ficedula albicollis)	2.332	LANGSTRECKEN	WALD	4.84	0.013
Buchfink (Fringilla coelebs)	3.04	KURZSTRECKEN	0	-0.46	0.009
Eichelhäher (Garrulus glandarius)	5.081	STANDVOGEL	WALD	-1.08	0.005
Gelbspötter (Hippolais icterina)	2.681	LANGSTRECKEN	0	0.42	-0.012
Rauchschwalbe (Hirundo rustica)	2.76	LANGSTRECKEN	KULTURLAND	-1.02	0.002
Wendehals (Jynx torquilla)	3.512	LANGSTRECKEN	KULTURLAND	-0.63	-0.001
Neuntöter (Lanius collurio)	3.398	LANGSTRECKEN	KULTURLAND	-2.25	0.005
Nachtigall (Luscinia megarhynchos)	2.907	LANGSTRECKEN	WALD	1.28	0.027
Grauammer (Miliaria calandra)	4.047	STANDVOGEL	KULTURLAND	-11.24	0.017
Bachstelze (Motacilla alba)	3.045	KURZSTRECKEN	0	-1.13	0.003
Grauschnäpper (Muscicapa striata)	2.681	LANGSTRECKEN	WALD	-0.33	-0.001
Pirol (Oriolus oriolus)	4.369	LANGSTRECKEN	WALD	0.44	0.012
Tannenmeise (Parus ater)	2.208	STANDVOGEL	WALD	-2.48	0.001
Blaumeise (Parus caeruleus)	2.588	STANDVOGEL	0	0.51	0.01
Haubenmeise (Parus cristatus)	2.322	STANDVOGEL	WALD	-1.52	-0.009
Kohlmeise (Parus major)	2.944	STANDVOGEL	0	-0.19	0.009
Weidenmeise (Parus montanus)	2.322	STANDVOGEL	WALD	-1.63	-0.022
Sumpfmeise (Parus palustris)	2.361	STANDVOGEL	WALD	0.49	0.013
Haussperling (Passer domesticus)	3.311	STANDVOGEL	0	1.24	0.006
Feldsperling (Passer montanus)	3.091	STANDVOGEL	KULTURLAND	1.82	0.013
Rebhuhn (Perdix perdix)	5.943	STANDVOGEL	KULTURLAND	-8.32	0.014
Hausrotschwanz (Phoenicurus ochruros)	2.803	KURZSTRECKEN	0	-0.19	0.012
Gartenrotschwanz (Phoenicurus phoenicurus)	2.674	LANGSTRECKEN	WALD	1.32	-0.017

Art	LogGewicht	Zugstrategie	Habitat	Trend	CST
Zilpzalp (Phylloscopus collybita)	2.015	KURZSTRECKEN	WALD	-1.97	0.009
Waldlaubsänger (Phylloscopus sibilatrix)	2.104	LANGSTRECKEN	WALD	-3.4	-0.002
Fitis (Phylloscopus trochilus)	2.163	LANGSTRECKEN	WALD	-4.16	-0.026
Elster (Pica pica)	5.112	STANDVOGEL	0	-1.86	0.002
Grauspecht (Picus canus)	4.92	STANDVOGEL	WALD	-4.45	0.003
Grünspecht (Picus viridis)	5.17	STANDVOGEL	WALD	1.24	0.012
Heckenbraunelle (Prunella modularis)	2.981	KURZSTRECKEN	WALD	-4.53	-0.012
Gimpel (Pyrrhula pyrrhula)	3.082	STANDVOGEL	WALD	-1.35	-0.008
Sommergoldhähnchen (Regulus ignicapillus)	1.723	KURZSTRECKEN	WALD	-5.38	0.014
Wintergoldhähnchen (Regulus regulus)	1.74	KURZSTRECKEN	WALD	-5.85	-0.012
Braunkehlchen (Saxicola rubetra)	2.809	LANGSTRECKEN	KULTURLAND	-2.61	-0.011
Schwarzkehlchen (Saxicola torquata)	2.728	KURZSTRECKEN	KULTURLAND	-6.34	0.016
Girlitz (Serinus serinus)	2.416	KURZSTRECKEN	KULTURLAND	-8.52	0.017
Kleiber (Sitta europaea)	3.091	STANDVOGEL	WALD	-0.14	0.012
Türkentaube (Streptopelia decaocto)	4.984	STANDVOGEL	0	2.35	0.021
Turteltaube (Streptopelia turtur)	4.883	LANGSTRECKEN	KULTURLAND	-4.7	0.013
Star (Sturnus vulgaris)	4.381	KURZSTRECKEN	KULTURLAND	0.44	0.02
Mönchsgrasmücke (Sylvia atricapilla)	2.741	KURZSTRECKEN	WALD	1.08	0.006
Gartengrasmücke (Sylvia borin)	2.632	LANGSTRECKEN	WALD	-2.25	-0.005
Dorngrasmücke (Sylvia communis)	2.674	LANGSTRECKEN	KULTURLAND	-2.31	0.01
Klappergrasmücke (Sylvia curruca)	2.313	LANGSTRECKEN	0	-2.43	-0.001
Zaunkönig (Troglodytes troglodytes)	2.186	STANDVOGEL	WALD	-1.81	0.009
Amsel (Turdus merula)	4.727	STANDVOGEL	WALD	0.03	0.011
Singdrossel (Turdus philomelos)	4.199	KURZSTRECKEN	WALD	-0.46	0.007
Wacholderdrossel (Turdus pilarius)	4.644	KURZSTRECKEN	KULTURLAND	-4.86	-0.024
Misteldrossel (Turdus viscivorus)	4.745	KURZSTRECKEN	WALD	0.33	0.003

StartClim2014.X

Art	LogGewicht	Zugstrategie	Habitat	Trend	CST
Kiebitz (Vanellus vanellus)	5.421	KURZSTRECKEN	KULTURLAND	-2.31	0.002